

Potential of Regenerative Therapy with Medical Assist Devices

Timothy D. Henry¹ MD ¹Cedars-Sinai Heart Institute, Los Angeles, CA

Cell Therapy for Heart Failure

Heart failure continues to be the leading cause of morbidity and mortality not only in the United States but throughout the world. Despite advances in medical and device therapy, many patients continue to have significant symptoms leaving heart transplantation, left ventricular assist devices (LVAD), or palliative care as the only options. This has stimulated interest in regenerative therapies including stem cell therapy. Based on positive preclinical results, the initial clinical trials used predominantly autologous bone marrow mononuclear stem cells (BMC). Trials with BMC demonstrated excellent safety but only modest efficacy most likely due to the significant variability with autologous BMC which is related to the decline in the number and potency of stem cells with age and cardiac risk factors.

This has stimulated the next generation of cell therapies which include allogeneic cells, cardiac derived cells, and enhanced cultured autologous cells. A recent large double-blind, placebo controlled Phase 2 trial using enhanced BMC cells (IxCell-DCM) demonstrated a significant reduction in mortality and cardiovascular hospitalizations in cell-treated patients. A second large Phase 2 trial using enhanced mesenchymal stem cells (MSCs) will be presented at ESC and a large Phase 3 trial with allogeneic MSCs is underway.

Risk Ratio

A-H, Random, 95% C

-

Favours cells

LVAD + MSC Circulation 2014; 129(22):2287-96

Fisher Meta-Analysis

Assmus 2013 Bolli 2011

onold 2012

Subtotal (95% CI)

Leterogeneity: Tau² = 0.00; Chi² = 1.79, df = 4 (P = 0.77); I² = 0%Fest for overall effect: Z = 3.17 (P = 0.002)

Total events

Heldman 2014 (BMSC Heldman 2014 (MSC)

	Ce	Is	No cells		Risk Ratio			Risk Ratio			
Study or Subgroup	Events Total		Events Total		Weight	M-H, Random, 95% CI		M-H, Random, 95% Cl			
1.1.2 Long term follow-u	p (≥12 m	onths)									
Assmus 2013	5	43	6	39	10.5%	0.76 [0.25, 2.28]			• 		
Bartunek 2013	1	21	2	15	2.4%	0.36 [0.04, 3.59]					
Bolli 2011	0	16	0	7		Not estimable					
Chen 2006	2	22	4	23	5.0%	0.52 [0.11, 2.57]			+		
Dib 2009	0	12	0	11		Not estimable					
Heldman 2014 (BMSC)	0	19	0	10		Not estimable					
Heldman 2014 (MSC)	1	19	1	11	1.8%	0.58 [0.04, 8.36]					
Honold 2012	0	22	1	10	1.3%	0.16 [0.01, 3.61]	•		<u> </u>		
Hu 2011	1	28	2	28	2.3%	0.50 [0.05, 5.20]			<u> </u>		
Menasche 2008	0	4	0	3		Not estimable					
Nasseri 2014	1	28	1	26	1.7%	0.93 [0.06, 14.09]					
Patila 2014	0	20	0	19		Not estimable					
Perin 2014	3	21	2	6	5.4%	0.43 [0.09, 2.00]			+-		
Pokushalov 2010	6	55	21	54	18.7%	0.28 [0.12, 0.64]					
Seth 2006	10	41	14	40	27.3%	0.70 [0.35, 1.38]			+		
Turan 2011	0	33	0	16		Not estimable					
Vitovec 2011	8	55	19	55	23.6%	0.42 [0.20, 0.88]			-		
Subtotal (95% CI)		459		373	100.0%	0.48 [0.34, 0.69]		•			
Total events	38		73								
Heterogeneity: Tau ² = 0.0	0; Chi ² = 4	.38, df	= 10 (P =	0.93); Iª	= 0%						
Test for overall effect: Z =	3.97 (P <	0.0001)								
							0.01	0.1	1 10		
								-			
								Favours cells	Favours no cells		

Circulation Research. 2015; 116: 1361-1377

Effect of cell treatment on heart failure symptoms measured by New York Heart Association (NYHA) functional class.

Effect of cell treatment on primary outcomes during long-term follow-up (≥12 months).

0 41 10 21 0 79

0.18 (0.06, 30.97) 0.18 (0.01, 4.13)

0.10 (0.01, 1.83

0.38 [0.06, 2.45]

Not estimable 0.39 [0.22, 0.70]

3.6% 3.5%

3.9% 9.7%

Changes in left ventricular ejection fraction (LVEF) after cell treatment compared with control.

Favours no cells

Favours cells

Author Disclosures: None

ROME

Mechanical Support & Cell Therapy

An even more attractive idea is to combine the benefits of novel, mechanical left ventricular support devices with regenerative therapy. To date, there have been a total of 67 patients randomized in 11 published clinical trials with the combination of cell therapy and LVAD trials. The largest of these (N=30) was an NIH-sponsored trial using allogeneic MSCs which demonstrated a potential benefit in LVAD weaning and a suggestion of mortality benefit.

In summary, despite optimal medical and device therapy the number of patients with advanced HF continues to grow. Both novel mechanical assist devices and regenerative therapy represent potential solutions. The combination of these two unique therapies may be a particularly attractive solution.

Sensitivity endpoint with investigational product procedure related events						
Placebo (n=51)	Ixmyelocel-T (n=58)					
	0.62 (0.41-0.95)					
	0.0267					
112-17	69.76					
45.5	54·5					
51	38					
25 (49%)	36 (62%)					
26 (51%)	22 (38%)					
10 (20%)	13 (22%)					
11 (22%)	3 (5%)					
2 (4%)	5 (9%)					
2 (4%)	1 (2%)					
1 (2%)	0					

Combined Cell therapy + LVAD

))	Study	N	Etiology	LVAD	Cell Type	Delivery	Reco very*	Death	Arrhythmia (count)
	Pagani (2003) ³⁶	5	ICM	-	Autologo us SkM	Intramyocardial	0	1	AF (2), sVT (2)
	Dib (2005) ³⁹	6	ICM	-	Autologo us SkM	Epicardial	0	3	sVT (1), VF (1)
	Fujita (2011) ⁴²	4	ICM	Pulsatile	Autologo us SkM	Intramyocardial	1	4	VBP (-)
	Sawa (2012) ⁴¹	1	NICM	Pulsatile	Autologo us SkM	Epicardial Sheet	1	0	0
	Miyagawa (2009) ⁴³	1	ICM	Pulsatile	Autologo us BMMC + SkM	Intramyocardial	0	1	0
8-119) =0-1667	Nasseri (2007) ⁴⁵	10	NICM	Pulsatile (2), Continuo us (8)	Autologo us BMMC	Intramyocardial	1	2	-
	Gojo (2007) ⁴⁴	1	ICM	Pulsatile	Autologo us BMMC	Intracoronary	1	0	-
	Anastasiadis (2011) ³⁷	2	ICM	Continuo us	Autologo us BMMC	Intramyocardial	0	0	-
	Anastasiadis (2012) ³⁸	1	ІСМ	Continuo us	Autologo us BMMC	Intramyocardial	0	0	-
	Ascheim (2014) ⁴⁰	20	ICM (13) NICM (7)	Continuo us	Allogenei c MSC	Intramyocardial	0	0	0
12·5 20	Stempien- Otero (2015) ⁵⁵	6	ICM	Continuo us	BMMC CD34 ⁺ CD34 ⁻	Intramyocardial	0	0	Ventricular arrhythmias (4)
13	Total	57					4	11	10